Inflatable Robots Are Destined for Space, If We Can Control Them

With funding from NASA, researchers are exploring how to control inflatable robots for future space missions

We don’t see a lot of inflatable robots, which is really too bad, because they’re weirdly excellent at being exactly the sort of robot that everybody seems to want: They’re cheap, being made of mostly fabric and rubber, and they’re very easy to fix. Relative to most other robots, they’re extraordinarily lightweight, and they pack down to a small fraction of their size once deflated. Despite their squishiness, they can be strong and unexpectedly fast, since they’re essentially hydraulic in nature. And perhaps most importantly, in most cases they’re passively safe, since they don’t have much in the way of rigid components or the inertia that comes with them.

The downside of inflatable robots is that in general they’re not very good at precise, repeatable control, precisely because they’re so floppy. It’s hard to keep track of exactly where all your robot’s bits are, and that makes manipulation a challenge. Brigham Young University, in Provo, Utah, has some funding from NASA to work on this, using an inflatable most-of-a-humanoid called King Louie.