Magnet Sets World Record at 45.5 Teslas

It’s the strongest continuous DC magnetic field ever recorded and could help scientists study nuclear fusion and exotic states of matter

A new multicomponent, partially-superconducting electromagnet—currently the world’s strongest magnet of any kind—is poised to reveal a path to substantially stronger magnets still. The new magnet technology could help scientists study many other phenomena including nuclear fusion, exotic states of matter“shape-shifting” molecules, and interplanetary rockets, to name a few.

The National High Magnetic Field Laboratory in Tallahassee, Florida is home to four advanced, ultra-strong magnets. One magnet supports magnetic resonance studies. Another is devoted to nuclear magnetic resonance. A third magnet is configured for mass spectrometry. And the last one produces the strongest magnetic fields in the world. (Sister MagLab campuses at the University of Florida and Los Alamos National Laboratory provide three more high-capacity magnets for other fields of study.)

It’s that last category on the Tallahassee campus—world’s strongest magnet—that the latest research is attempting to complement. The so-called MagLab DC Field Facility, in operation since 1999, is nearing a limit in the strength of magnetic fields it can produce with its current materials and technology.

The MagLab’s DC magnet maintains a steady 45 Tesla of field strength, which until very recently was the strongest continuous magnetic field produced in the world. (Not to be confused with the electric car brand of the same name, Tesla is also a unit of magnetic field strength. The higher its Tesla rating, the stronger the magnet. For comparison, a typical MRI machine is built around a superconducting magnet with approximately 3 Tesla of field strength. The Earth’s magnetic field, felt at the planet’s surface, is 0.00005 T.)